

Journal of Organometallic Chemistry 515 (1996) 143-154

# Pyrolysis of $\operatorname{Ru}_3(\mu$ -dppm)(CO)<sub>9</sub>(PPh<sub>3</sub>): formation of novel Ru<sub>4</sub> and Ru<sub>3</sub> clusters

Michael I. Bruce<sup>a,\*</sup>, Natasha N. Zaitseva<sup>a</sup>, Brian W. Skelton<sup>b</sup>, Allan H. White<sup>b</sup>

<sup>a</sup> Department of Chemistry, University of Adelaide, Adelaide, S.A. 5005, Australia <sup>b</sup> Department of Chemistry, University of Western Australia, Nedlands, W.A. 6907, Australia

Received 10 October 1995

#### Abstract

Heating  $\operatorname{Ru}_3(\mu\operatorname{-dppm})(\operatorname{CO})_9(\operatorname{PPh}_3)$  (2) for 90 min in refluxing toluene resulted in the formation of  $\operatorname{Ru}_4(\mu_4\operatorname{-PPh})(\mu_4\operatorname{-PPh}_2C_6H_4\operatorname{CO})(\mu\operatorname{-PPh}_2CH_2)(\operatorname{CO})_8$  (3) and  $\operatorname{Ru}_3(\mu_3\operatorname{-PPh}(C_6H_4))(\mu\operatorname{-PPh}_2CH_2)(\mu\operatorname{-CO})(\operatorname{CO})_6$  (4) as the major products (41%); other complexes identified were  $\operatorname{Ru}_3(\mu_3\operatorname{-PPh}(C_6H_4))(\operatorname{CO})_9$  (5) and  $\operatorname{Ru}_2(\mu\operatorname{-PPh}_6H_4\operatorname{PPh}(C_6H_4))(\operatorname{CO})_{6-n}(\operatorname{PPh}_3)_n$  [n = 1(6), 0(7)]. The transformations involve oxidative addition of aromatic C-H and P-C bonds to the cluster, elimination of benzene and carbonylation of the aryl-Ru bond, as well as cluster disproportionation. X-ray structures of 3, 4 and 6 are presented.

Keywords: Ruthenium; Carbonyl; Clusters; Pyrolysis; Crystal structure

#### 1. Introduction

The complex Ru<sub>3</sub>( $\mu$ -dppm)(CO)<sub>10</sub> (1) has proved to be a rich source of interesting chemistry [1]. Facile thermal transformations to a variety of complexes have been described by several groups and these are summarised in Scheme 1 [2]. Ready dephenylation to give the  $\mu_3$ -bridging phosphido-phosphine ligand PPhC<sub>6</sub>H<sub>4</sub>-PPh<sub>2</sub>, metallation to give PPh<sub>2</sub>CH<sub>2</sub>PPh(C<sub>6</sub>H<sub>4</sub>), a combination of the two reactions to give PPhCH<sub>2</sub>PPh-(C<sub>6</sub>H<sub>4</sub>), and subsequent linking of the C<sub>6</sub>H<sub>4</sub> and CH<sub>2</sub> fragments to give the bidentate phosphine PPhC<sub>6</sub>H<sub>4</sub>-PPhCH<sub>2</sub>, have all been found [2]. In related reactions, hydrogenation produced a double dephenylation to give the  $\mu_3$ -PPh ligand [3], while cleavage of the cluster afforded isomeric binuclear complexes containing  $\mu$ -PPhC<sub>6</sub>H<sub>4</sub>PPhCH<sub>2</sub> and  $\mu$ -PPhCH<sub>2</sub>PPhC<sub>6</sub>H<sub>4</sub> ligands [4].

Pyrolysis of PPh<sub>3</sub> and PMePh<sub>2</sub> derivatives of Ru<sub>3</sub>- $(CO)_{12}$  has also given a variety of novel complexes, formed both by degradation of the tertiary phosphine and by cluster expansion reactions [5]. Features not seen in the reactions of 1 include formation and trapping of benzyne on the trinuclear cluster, further interaction of





Scheme 1.

the benzyne ligand with an extra one or two  $Ru(CO)_3$  fragments, and stepwise carbonylation of the benzyne to give cluster-bound benzoyl and phthaloyl ligands [6].

Complex 1 is readily substituted by tertiary phosphines to give  $\operatorname{Ru}_3(\mu$ -dppm)(CO)<sub>9</sub>(PR<sub>3</sub>), in which the entering phosphine substitutes a CO group on the  $\operatorname{Ru}(CO)_4$  fragment of 1 [7]. This paper describes the products obtained by pyrolysis of the mixed complex  $\operatorname{Ru}_3(\mu$ -dppm)(CO)<sub>9</sub>(PPh<sub>3</sub>) (2), a reaction carried out to determine whether complex(es) containing fragments derived from both PPh<sub>3</sub> and dppm ligands would be formed.

## 2. Results

Complex 2 was heated in refluxing toluene for 90 min. Subsequent work-up by thin layer chromatography afforded five products, accounting for nearly 90% of 2, which separated from a baseline. These are summarised in Scheme 2 and comprised orange  $\text{Ru}_4(\mu_4\text{-PPh})(\mu_4\text{-PPh}_2\text{C}_6\text{H}_4\text{CO})(\mu\text{-PPh}_2\text{CH}_2)(\text{CO})_8$  (3), dark red  $\text{Ru}_3(\mu_3\text{-PPh}(\text{C}_6\text{H}_4))(\mu\text{-PPh}_2\text{CH}_2)(\mu\text{-PPh}_2)(\mu\text{-CO})$ -(CO)<sub>6</sub> (4), orange  $\text{Ru}_3(\mu_3\text{-PPh}(\text{CH}_2\text{PPh}(\text{C}_6\text{H}_4))(\text{CO})_9$  (5; Scheme 1), yellow  $\text{Ru}_2(\mu\text{-PPh}(\text{C}_6\text{H}_4))(\text{CO})_9$  (CO)<sub>5</sub>(PPh<sub>3</sub>) (6), and pale yellow  $\text{Ru}_2(\mu\text{-PPh}(\text{C}_6\text{H}_4))(\text{CO})_9$  (CO)<sub>5</sub>(PPh<sub>3</sub>) (6). Attempts to establish the sequence of reactions which led to the formation of these complexes were not successful: shorter reaction times result

in the formation of the same products, but only 70% conversion was achieved, while under milder conditions, the same products were formed over a longer reaction time.

Of most interest is the finding that the PPh<sub>3</sub> ligand could be displaced, nearly 27% of the products (5 and 7) not containing this ligand and being identical to thermolysis products from 1; only complex 6 contains an unchanged PPh<sub>3</sub> ligand. The major product is 3, which contains four Ru atoms and three P atoms, one of which is in a ligand that can reasonably be derived from alteration of coordinated PPh<sub>3</sub>. However, no linkage of fragments from PPh<sub>3</sub> and dppm appears to have occurred.

The complexes were identified as follows.

(a)  $Ru_4(\mu_4$ -PPh)( $\mu_4$ -PPh\_2C\_6H\_4CO)( $\mu$ -PPh\_2CH\_2)-(CO)\_8 (3). This cluster has a complex IR spectrum containing nine terminal  $\nu$ (CO) bands; the mass spectrum shows a molecular ion which fragments by stepwise loss of up to nine CO groups, followed by three Ph groups. The molecular structure of **3** was determined by X-ray crystallography (see below).

(b)  $Ru_3\{\mu_3 - PPh(C_6H_4)\}(\mu - PPh_2CH_2)(\mu - CO)(CO)_6$  (4). As with 3, the spectroscopic data were not sufficient to establish the molecular structure, which was determined by a single-crystal X-ray study (see below). The IR spectrum contained six terminal  $\nu$ (CO) bands, while the <sup>1</sup>H NMR spectrum contained peaks at  $\delta$  0.89 and 5.72 assigned to the CH<sub>2</sub> protons of the



Scheme 2.

 $PPh_2CH_2$  ligand. In the aromatic region, several multiplets were found, but could not be reliably assigned to any particular ligand.

(c)  $Ru_3\{\mu_3-PPhCH_2PPh(C_6H_4)\}(CO)_9$  (5). This complex has been described before [2,8] and its identity

was confirmed by comparison with an authentic sample (IR, MS).

(d)  $Ru_2(\mu - PPhC_6H_4PPhCH_2)(CO)_{6-n}(PPh_3)_n[n = 1 (6), 0 (7)]$ . The IR spectrum of 6 contains only four  $\nu$ (CO) bands. The stoichiometry was determined from



Fig. 1. Plots of a molecule of  $Ru_4(\mu_4$ -PPh<sub>2</sub>C<sub>6</sub>H<sub>4</sub>CO)( $\mu$ -PPh<sub>2</sub>CH<sub>2</sub>)(CO)<sub>8</sub> (3) (a) perpendicular to and (b) oblique to the  $Ru_4$  plane showing atom numbering scheme. In this and subsequent figures, non-hydrogen atoms are shown with 20% thermal envelopes; hydrogen atoms have arbitrary radii of 0.1 Å.

its mass spectrum, which contained a molecular ion at m/z 912 and ions formed by loss of between three and five CO groups. A single-crystal X-ray structural determination showed the complex was a PPh<sub>3</sub> substitution product of 7, also obtained here, and previously reported as a by-product of a reaction of 1 with benzyl halides [4]. Complex 7 was identified by comparison (IR, MS) with an authentic sample.

## 2.1. Molecular structures

(a)  $Ru_4(\mu_4-PPh)(\mu_4-PPh_2C_6H_4CO)(\mu-PPh_2CH_2)$ -(CO)<sub>8</sub> (3). Plots of a molecule of 3 are shown in Fig. 1



Fig. 2. Plots of molecule 1 of  $\operatorname{Ru}_{3}\{\mu_{3}-\operatorname{PPh}(C_{6}H_{4})\}(\mu-\operatorname{PPh}_{2}CH_{2})(\mu-\operatorname{PPh}_{2}CO)(CO)_{6}$  (4) (a) perpendicular to and (b) oblique to the  $\operatorname{Ru}_{3}$  plane showing atom numbering scheme.



Fig. 3. Plot of a molecule of  $Ru_2(\mu$ -PPhC<sub>6</sub>H<sub>4</sub>PPhCH<sub>2</sub>)(CO)<sub>5</sub>(PPh<sub>3</sub>) (6) showing atom numbering scheme.

and significant structural parameters are collected in Table 1. The molecule is based on a rectangular Ru<sub>4</sub> core, which has unequal edges (two long, two short) ranging between 2.778(3) and 2.940(3) Å. One side is capped by the PPh group, with two long [Ru(1,4)–P(2) 2.412(7), 2.420(7) Å] and two short [Ru(2,3)–P(2) 2.363(7), 2.334(7) Å] bonds; similar  $\mu_4$ -PR complexes often show a three short, one long pattern of M–P bonds. The Ru(1)–Ru(4) edge of the trapezium is bridged by a PPh<sub>2</sub>CH<sub>2</sub> ligand with Ru(1)–P(1) [2.317(8) Å] and Ru(4)–C(1) [2.14(1) Å] separations somewhat shorter than those found in **5** and **7** (below).

The remaining organic group is a 2-diphenylphosphinobenzoyl ligand, which is attached by P(3) to Ru(2)[2.334(7) Å], to Ru(3) by an  $\eta^2$ -interaction with the  $C_6H_4$  group [Ru(3)–C(311,312) 2.26(2), 2.31(2) Å] and to the  $Ru_4$  core by the carbonyl group. The latter seems to be unprecedented, with C(3121) bridging the Ru(2)-Ru(3) edge [Ru(2,3)-C(3121) 2.09(2), 2.26(2) Å] andO(3121) bridging Ru(1)-Ru(4) [Ru(1,4)-O(3121)2.17(2), 2.16(2) Å]. This mode of interaction is related to that found in  $\operatorname{Ru}_{3}(\mu-H)(\mu_{3}-O=CC_{6}H_{4}PPh_{2})(\mu-H)$  $dppm)(CO)_6$ , in which the CO of the benzoyl group interacts with the Ru<sub>3</sub> core in a  $2\eta^1$ ,  $\eta^2$ -mode [9]. The  $\pi$ -bonded Ru–C, O distances are 2.21(3) and 2.16(2) Å respectively, while the  $\sigma$ -bonded Ru–C, O distances are 2.04(2) and 2.09(2) Å respectively. In both cases, there are parallels between the coordination of the C=Ogroup with the more familiar  $C \equiv C$  system.

(b)  $Ru_3\{\mu_3-PPh(C_6H_4)\}(\mu-PPh_2CH_2)(\mu-PPh_2)(\mu-CO)(CO)_6$  (4). Fig. 2 shows a molecule of 4 and relevant bond parameters are collected in Table 2. The triangular metal core is capped by a PPh(C\_6H\_4) ligand,

and each of the three edges is bridged by a different ligand. A PPh<sub>2</sub>CH<sub>2</sub> ligand bridges Ru(1)–Ru(2), which is the longest Ru–Ru separation at 2.981 Å [Ru(1)–P(3) 2.36, Ru(2)–C(331) 2.12 Å], while Ru(1)–Ru(3) carries a  $\mu$ -PPh<sub>2</sub> group [Ru(1,3)–P(2) 2.33, 2.33 Å]; the third Ru–Ru vector is bridged by CO(23). The Ru<sub>3</sub> triangle is capped by a PPh(C<sub>6</sub>H<sub>4</sub>) ligand [Ru(1)–C(112) 2.13; Ru(2,3)–P(1) 2.34, 2.33 Å]. Coordination is completed by two terminal CO groups on each ruthenium atom.

(c)  $Ru_2(\mu - PPhC_6H_4PPhCH_2)(CO)_5(PPh_3)$  (6). A plot of a molecule of 6 is shown in Fig. 3 and salient

Table 2

Table 1

Significant bond lengths (Å) and angles (deg) for  $Ru_3(\mu_3-PPh(C_6H_4))(\mu-PPh_2CH_2)(\mu-POh_2CO)_6$  (4) <sup>a</sup>

| Dona ienguis                       |       |
|------------------------------------|-------|
| Ru(1)-Ru(2) 2.943(6), 3.019(6)     | 2.981 |
| Ru(1)-Ru(3) 2.912(5), 2.913(6)     | 2.913 |
| Ru(2)-Ru(3) 2.744(6), 2.722(6)     | 2.733 |
| Ru(1)-P(2) 2.33(2), 2.33(1)        | 2.33  |
| Ru(1)-P(3) 2.36(2), 2.36(2)        | 2.36  |
| Ru(2)-P(1) 2.32(1), 2.36(1)        | 2.34  |
| Ru(3)-P(1) 2.33(2), 2.33(1)        | 2.33  |
| Ru(3)-P(2) 2.35(2), 2.30(1)        | 2.33  |
| Ru(1)-C(112) 		 2.13(3), 2.13(3)   | 2.13  |
| Ru(2)-C(23) 2.02(5), 2.24(6)       | 2.13  |
| Ru(2)-C(331) 2.21(5), 2.03(4)      | 2.12  |
| Ru(3)-C(23) 2.12(5), 1.97(6)       | 2.05  |
| P(1)–C(111) 1.75(4), 1.77(4)       | 1.76  |
| P(3)-C(331) 1.76(6), 1.75(4)       | 1.76  |
| Bond angles                        |       |
| Ru(1)-P(3)-C(331) 112(2), 107(2)   | 110   |
| Ru(2)-C(331)-P(3) 92(2), 102(2)    | 97    |
| Ru(1)-C(112)-C(111) 119(2), 121(2) | 120   |
| P(1)-C(111)-C(112) 113(2), 117(3)  | 115   |

<sup>a</sup> Two values for each entry are for molecules 1 and 2.

bond distances and angles, together with those of 7, are listed in Table 3. The PPhC<sub>6</sub>H<sub>4</sub>PPhCH<sub>2</sub> ligand bridges the two ruthenium atoms via P(2) [Ru(1,2)–P(2) 2.339(5), 2.362(4) Å] and the P(1)–C(1) fragment [Ru(1)–P(1) 2.370(5), Ru(2)–C(1) 2.25(2) Å]. The PPh<sub>3</sub> ligand is attached to Ru(2) [Ru(2)–P(3) 2.346(4) Å] approximately *trans* to the Ru–Ru bond [Ru(1)–Ru(2)–P(3) 162.8(1)°]. Neglecting the Ru–Ru bond, the two rutheniums have nearly trigonal bipyramidal geometries; there are no significant differences between similar parameters in the structures of **6** and **7**.

## 3. Discussion

The major feature of interest in the present work is the formation of the tetranuclear complex 3 as the major product. The ligands present in 3 are formally formed by loss of benzene from the dppm and PPh<sub>3</sub> combination. The benzoyl phosphine can be formed by insertion of CO in a metallated phenyl-Ru bond, as found for the benzyne ligand in  $\operatorname{Ru}_3(\mu_3-C_6H_4)(\mu-PPh_2)_2(CO)_7$  reported earlier [5]. Metallation of PPh<sub>3</sub> to give the  $PPh_2(C_6H_4)$  ligand is a common reaction in mononuclear metal-PPh<sub>3</sub> complexes, but is not so common in clusters. Further interaction of the  $C_6H_4$  ring by  $\eta^2$ -coordination to Ru(2) appears to result from the close approach of this ring to the metal atom, which is forced by the  $\mu_4$ -coordination of the acyl group to the Ru<sub>4</sub> face. Formally, the dppm ligand has been cleaved at the  $P-CH_2$  bond to give a  $PPh_2CH_2$  ligand, which bridges one Ru-Ru edge, and a PPh<sub>2</sub> group. Under the reaction conditions, this has further dephenylated (probably by elimination of benzene formed by combination of the

Important bond lengths (Å) and angles (deg) in  $\operatorname{Ru}_4(\mu_4-\operatorname{PPh})(\mu_4-\operatorname{PPh}_2C_6H_4CO)(\mu-\operatorname{PPh}_2CH_2)(CO)_9$  (3)

| Bond lengths          |          |                        |          |  |
|-----------------------|----------|------------------------|----------|--|
| Ru(1)-Ru(2)           | 2.855(3) | Ru(2)-C(3121)          | 2.09(2)  |  |
| Ru(1)-Ru(4)           | 2.786(4) | Ru(3)–C(3121)          | 2.26(3)  |  |
| Ru(2)-Ru(3)           | 2.778(3) | Ru(3)-C(311)           | 2.26(2)  |  |
| Ru(3)-Ru(4)           | 2.940(3) | Ru(3)-C(312)           | 2.31(2)  |  |
| Ru(1) - P(1)          | 2.317(8) | Ru(4)-C(1)             | 2.14(3)  |  |
| Ru(1) - P(2)          | 2.412(7) | Ru(1)–O(3121)          | 2.17(2)  |  |
| Ru(2) - P(2)          | 2.363(7) | Ru(4)-O(3121)          | 2.16(2)  |  |
| Ru(2) - P(3)          | 2.309(8) | P(1)-C(1)              | 1.74(3)  |  |
| Ru(3) - P(2)          | 2.334(7) | P(3)-C(311)            | 1.82(2)  |  |
| Ru(4) - P(2)          | 2.420(7) | O(3121)-C(3121)        | 1.31(3)  |  |
|                       |          | C(311)–C(312)          | 1.35(3)  |  |
| Bond angles           |          |                        |          |  |
| Ru(2) - Ru(1) - Ru(4) | 89.7(1)  | Ru(1) - P(1) - C(1)    | 101.7(9) |  |
| Ru(1)-Ru(2)-Ru(3)     | 91.9(1)  | Ru(4) - C(1) - P(1)    | 98(1)    |  |
| Ru(2) - Ru(3) - Ru(4) | 88.1(1)  | P(3)-C(311)-C(312)     | 116(2)   |  |
| Ru(3) - Ru(4) - Ru(1) | 90.0(1)  | C(311)-C(312)-C(3121)  | 113(2)   |  |
|                       |          | C(312)-C(3121)-O(3121) | 118(2)   |  |

Table 3

|                      | L = CO                                  | $L = PPh_3$ |                      | L = CO   | $L = PPh_3$ |
|----------------------|-----------------------------------------|-------------|----------------------|----------|-------------|
| Bond lengths         | ••••••••••••••••••••••••••••••••••••••• |             |                      |          |             |
| Ru(1)-Ru(2)          | 2.8110(7)                               | 2.834(2)    | Ru(1)-C(13)          | 1.937(6) | 1.88(2)     |
| Ru(1) - P(1)         | 2.356(1)                                | 2.370(5)    | Ru(2) - C(21)        | 1.921(5) | 1.85(2)     |
| Ru(1) - P(2)         | 2.332(1)                                | 2.339(5)    | Ru(2)-C(22)          | 1.899(5) | 1.89(2)     |
| Ru(2) - P(2)         | 2.343(1)                                | 2.362(4)    | Ru(2)-C(23)          | 1.917(7) |             |
| Ru(2) - P(3)         |                                         | 2.346(4)    | P(1)-C(1)            | 1.786(4) | 1.76(1)     |
| Ru(2) - C(1)         | 2.232(6)                                | 2.25(2)     | P(1)-C(101)          | 1.827(4) | 1.78(1)     |
| Ru(1) - C(11)        | 1.916(6)                                | 1.91(2)     | P(2)-C(102)          | 1.815(4) | 1.81(2)     |
| Ru(1)-C(12)          | 1.907(6)                                | 1.92(2)     |                      |          |             |
| Bond angles          |                                         |             |                      |          |             |
| Ru(2) - Ru(1) - P(1) | 72.52(4)                                | 71.9(1)     | Ru(1) - P(2) - Ru(2) | 73.92(3) | 74.2(1)     |
| Ru(1)-Ru(2)-C(1)     | 80.0(1)                                 | 79.1(3)     |                      |          |             |
| Ru(1) - P(1) - C(1)  | 103.5(2)                                | 103.8(6)    | Ru(2)-C(1)-P(1)      | 99.4(2)  | 99.6(7)     |

Important bond lengths and angles in  $\operatorname{Ru}_2(\mu\operatorname{-PPhC}_6H_4\operatorname{PPhCH}_2)(\operatorname{CO})_{6-n}(\operatorname{PPh}_3)_n$  [n = 1(6), 0(7) [7d]]

Ph group with the H from the metallated PPh<sub>3</sub> ligand, through the intermediacy of an undetected cluster hydride) to give the  $\mu_4$ -PPh ligand found capping one side of the Ru<sub>4</sub> rectangle. The latter has been formed by disproportionation of the original Ru<sub>3</sub> cluster, formally again by incorporation of a ruthenium carbonyl fragment liberated during the formation of the binuclear complexes 6 and 7.

The structural diversity of the ligands present in 4 is remarkable, although each has been found previously in other complexes formed by pyrolysis of ruthenium carbonyl clusters containing  $PPh_3$  or dppm. The simplest way to account for the formation of this compound is by oxidative addition of an ortho C-H group of one of the *P*-phenyl groups of the PPh<sub>3</sub> ligand across an Ru-Ru bond [as found with Os<sub>3</sub>(CO)<sub>10</sub>(PPh<sub>3</sub>)<sub>2</sub> [5a]] to give  $\mu$ -H and  $\mu$ -PPh<sub>2</sub>C<sub>6</sub>H<sub>4</sub> ligands, followed by elimination of benzene, formed by combination of the cluster-bound H atom with one of the Ph groups of the PPh<sub>2</sub>C<sub>6</sub>H<sub>4</sub> ligand. The resulting phosphido group is found bridging Ru(2)-Ru(3). Alteration of the dppm ligand occurs by oxidative addition of a P-CH<sub>2</sub> bond across the cluster, to give PPh<sub>2</sub> and PPh<sub>2</sub>CH<sub>2</sub> ligands. While this is not a common route for dppm, which usually prefers to add a phenyl C-H bond and then to eliminate benzene, evidently this process is blocked by the PPh<sub>3</sub> ligand in the

Table 4

| Crystal data | and | refinement | details | for | 3, 4 | and | 6 |
|--------------|-----|------------|---------|-----|------|-----|---|
|--------------|-----|------------|---------|-----|------|-----|---|

| Compound                           | 3                          | 4                                  | 6                              |
|------------------------------------|----------------------------|------------------------------------|--------------------------------|
| Formula                            | $C_{46}H_{31}O_9P_3Ru_4$   | $C_{44}H_{31}O_7P_3Ru_3$           | $C_{42}H_{31}O_5P_3Ru_2$       |
| MW                                 | 1225.0                     | 1067.9                             | 910.8                          |
| Crystal system                     | Orthorhombic               | Orthorhombic                       | Triclinic                      |
| Space group                        | <i>Pbca</i> (No. 61)       | <i>Pca</i> 2 <sub>1</sub> (No. 29) | <i>P</i> 1 (No. 2)             |
| a (Å)                              | 21.060(19)                 | 22.112(7)                          | 18.890(9)                      |
| b (Å)                              | 30.115(14)                 | 12.847(9)                          | 10.93(1)                       |
| <i>c</i> (Å)                       | 15.107(8)                  | 29.378(12)                         | 10.520(5)                      |
| $\alpha$ (deg)                     |                            |                                    | 66.29(5)                       |
| $\beta$ (deg)                      |                            |                                    | 83.39(3)                       |
| γ (deg)                            |                            |                                    | 78.88(3)                       |
| V (Å <sup>3</sup> )                | 9581                       | 8346                               | 1950                           |
| Ζ                                  | 8                          | 8                                  | 2                              |
| $D_{\rm c} ({\rm g}{\rm cm}^{-3})$ | 1.70                       | 1.70                               | 1.55                           |
| F(000)                             | 4800                       | 4224                               | 912                            |
| Crystal size (mm <sup>3</sup> )    | 0.57 	imes 0.07 	imes 0.18 | $0.24 \times 0.11 \times 0.06$     | $0.08 \times 0.37 \times 0.10$ |
| A <sup>*</sup> (min, max)          | 1.10, 1.21                 | 1.07, 1.15                         | 1.07, 1.11                     |
| $\mu$ (cm <sup>-1</sup> )          | 13.9                       | 12.4                               | 9.4                            |
| $2\theta_{max}$ (deg)              | 55                         | 45                                 | 50                             |
| Ν                                  | 10007                      | 5199                               | 6824                           |
| No                                 | 2722                       | 2114                               | 3998                           |
| Ŕ                                  | 0.075                      | 0.074                              | 0.075                          |
| R <sub>w</sub>                     | 0.078                      | 0.071                              | 0.081                          |

Table 5 Non-hydrogen positional and isotropic displacement parameters (3)

| Atom             | X                    | у                     | Ζ         | $U_{eq}$ Å <sup>2</sup> |
|------------------|----------------------|-----------------------|-----------|-------------------------|
| Ru(1)            | 0.3657(1)            | 0.35621(6)            | 0.8784(2) | 0.0363(8)               |
| Ru(2)            | 0.27507(9)           | 0.39084(6)            | 0.7559(2) | 0.0345(7)               |
| <b>Ru</b> (3)    | 0.3648(1)            | 0.39436(7)            | 0.6213(2) | 0.0363(8)               |
| Ru(4)            | 0.46011(9)           | 0.36428(6)            | 0.7503(2) | 0.0363(7)               |
| C(11)            | 0.325(2)             | 0.303(1)              | 0.911(2)  | 0.08(1)                 |
| O(11)            | 0.2959(9)            | 0.2729(6)             | 0.923(1)  | 0.068(6)                |
| C(12)            | 0.329(1)             | 0.3840(9)             | 0.982(2)  | 0.054(9)                |
| O(12)            | 0.3128(9)            | 0.3991(6)             | 1.044(1)  | 0.065(6)                |
| C(21)            | 0.206(1)             | 0.3524(8)             | 0.740(2)  | 0.050(7)                |
| O(21)            | 0.1023(9)            | 0.3312(6)             | 0.732(1)  | 0.070(6)                |
| O(22)            | 0.237(1)             | 0.414(1)<br>0.4316(7) | 0.855(2)  | 0.057(7)                |
| C(31)            | 0.214(1)             | 0.365(1)              | 0.525(2)  | 0.077(7)                |
| O(31)            | 0.301(1)             | 0.3438(7)             | 0.525(2)  | 0.055(9)                |
| C(32)            | 0.436(1)             | 0.4050(8)             | 0.545(2)  | 0.038(7)                |
| O(32)            | 0.4758(9)            | 0.4120(6)             | 0.497(1)  | 0.057(6)                |
| C(41)            | 0.497(1)             | 0.313(1)              | 0.712(2)  | 0.07(1)                 |
| O(41)            | 0.521(1)             | 0.2813(7)             | 0.686(1)  | 0.077(7)                |
| C(42)            | 0.526(1)             | 0.3945(9)             | 0.699(2)  | 0.058(8)                |
| O(42)            | 0.567(1)             | 0.4124(7)             | 0.661(1)  | 0.083(7)                |
| C(1)             | 0.515(1)             | 0.3698(8)             | 0.869(2)  | 0.043(7)                |
| P(1)             | 0.4641(4)            | 0.3400(2)             | 0.9386(5) | 0.040(3)                |
| C(111)           | 0.489(1)             | 0.2819(8)             | 0.939(2)  | 0.040(7)                |
| C(112)           | 0.451(1)             | 0.250(1)              | 0.973(2)  | 0.059(9)                |
| C(113)           | 0.471(2)<br>0.524(2) | 0.206(1)              | 0.979(2)  | 0.07(1)                 |
| C(114)<br>C(115) | 0.524(2)             | 0.195(1)              | 0.940(3)  | 0.10(1)                 |
| C(115)           | 0.500(2)             | 0.224(1)<br>0.271(1)  | 0.911(2)  | 0.09(1)                 |
| C(121)           | 0.348(2)<br>0.478(1) | 0.3577(9)             | 1.052(2)  | 0.07(1)                 |
| C(122)           | 0.464(1)             | 0.4011(9)             | 1.074(2)  | 0.062(9)                |
| C(123)           | 0.471(2)             | 0.415(1)              | 1.166(2)  | 0.09(1)                 |
| C(124)           | 0.499(2)             | 0.387(1)              | 1.227(2)  | 0.09(1)                 |
| C(125)           | 0.514(2)             | 0.346(1)              | 1.205(3)  | 0.09(1)                 |
| C(126)           | 0.505(2)             | 0.329(1)              | 1.116(2)  | 0.07(1)                 |
| P(2)             | 0.3536(3)            | 0.3371(2)             | 0.7243(4) | 0.034(2)                |
| C(211)           | 0.338(1)             | 0.2780(9)             | 0.699(2)  | 0.050(8)                |
| C(212)           | 0.286(1)             | 0.2693(9)             | 0.646(2)  | 0.055(8)                |
| C(213)           | 0.272(2)             | 0.222(1)              | 0.631(2)  | 0.09(1)                 |
| C(214)           | 0.307(2)             | 0.191(1)              | 0.676(2)  | 0.07(1)                 |
| C(215)           | 0.330(2)             | 0.199(1)<br>0.246(1)  | 0.730(2)  | 0.08(1)                 |
| P(3)             | 0.2497(3)            | 0.240(1)              | 0.740(2)  | 0.070(9)                |
| C(311)           | 0.330(1)             | 0.4651(7)             | 0.630(2)  | 0.035(7)                |
| C(312)           | 0.375(1)             | 0.4616(7)             | 0.694(2)  | 0.027(6)                |
| C(3121)          | 0.361(1)             | 0.4253(7)             | 0.757(2)  | 0.038(6)                |
| O(3121)          | 0.4050(8)            | 0.4150(5)             | 0.815(1)  | 0.036(4)                |
| C(313)           | 0.431(1)             | 0.4879(8)             | 0.691(2)  | 0.042(7)                |
| C(314)           | 0.439(1)             | 0.5159(9)             | 0.622(2)  | 0.066(9)                |
| C(315)           | 0.395(1)             | 0.5188(9)             | 0.555(2)  | 0.049(8)                |
| C(316)           | 0.340(1)             | 0.4937(9)             | 0.551(2)  | 0.050(8)                |
| C(321)           | 0.201(1)             | 0.447(1)              | 0.568(2)  | 0.058(9)                |
| C(322)           | 0.182(1)             | 0.4855(9)             | 0.524(2)  | 0.062(9)                |
| C(323)<br>C(324) | 0.140(2)             | 0.484(1)<br>0.442(1)  | 0.447(2)  | 0.07(1)                 |
| C(324)<br>C(325) | 0.12/(2)<br>0.146(2) | 0.442(1)              | 0.413(2)  | 0.08(1)                 |
| C(325)<br>C(326) | 0.140(2)             | 0.403(1)              | 0.433(2)  | 0.063(0)                |
| C(320)           | 0.216(1)             | 0.404(1)              | 0.333(2)  | 0.003(9)                |
| C(332)           | 0.252(1)             | 0.5347(9)             | 0.732(2)  | 0.061(9)                |
| C(333)           | 0.226(2)             | 0.571(1)              | 0.784(2)  | 0.08(1)                 |
| C(334)           | 0.163(2)             | 0.566(1)              | 0.819(2)  | 0.08(1)                 |
| C(335)           | 0.132(2)             | 0.528(1)              | 0.806(2)  | 0.08(1)                 |
| C(336)           | 0.157(1)             | 0.4941(9)             | 0.754(2)  | 0.062(8)                |

| Table 6      |              |               |              |                |
|--------------|--------------|---------------|--------------|----------------|
| Non-hydrogen | positional a | and isotropic | displacement | parameters (4) |

| Atom    | <i>x</i>  | у         | z         | $U_{\rm eq}$ Å <sup>2</sup> |
|---------|-----------|-----------|-----------|-----------------------------|
| Ru(11)  | 0.6918(2) | 0.5150(3) | 0.5(-) *  | 0.050(2)                    |
| Ru(12)  | 0.5712(2) | 0.4256(3) | 0.4836(2) | 0.042(2)                    |
| Ru(13)  | 0.6232(2) | 0.5439(3) | 0.4163(2) | 0.045(2)                    |
| C(111)  | 0.711(2)  | 0.395(4)  | 0.469(2)  | 0.05(2)                     |
| O(111)  | 0.736(2)  | 0.313(3)  | 0.453(1)  | 0.10(2)                     |
| C(112)  | 0.761(3)  | 0.540(4)  | 0.526(2)  | 0.09(2)                     |
| O(112)  | 0.810(1)  | 0.536(2)  | 0.548(1)  | 0.06(1)                     |
| C(121)  | 0.596(3)  | 0.286(5)  | 0.480(2)  | 0.10(2)                     |
| 0(121)  | 0.612(2)  | 0.194(3)  | 0.475(1)  | 0.07(1)                     |
| C(122)  | 0.490(2)  | 0.389(4)  | 0.490(2)  | 0.08(2)                     |
| O(122)  | 0.439(2)  | 0.369(3)  | 0.490(1)  | 0.10(1)                     |
| C(123)  | 0.564(2)  | 0.415(4)  | 0.415(2)  | 0.07(2)                     |
| O(123)  | 0.534(2)  | 0.378(4)  | 0.386(2)  | 0.13(2)                     |
| C(131)  | 0.670(2)  | 0.468(4)  | 0.380(2)  | 0.07(2)                     |
| O(131)  | 0.696(2)  | 0.422(3)  | 0.352(1)  | 0.09(1)                     |
| C(132)  | 0.598(3)  | 0.628(5)  | 0.375(2)  | 0.11(3)                     |
| O(132)  | 0.572(3)  | 0.661(5)  | 0.338(2)  | 0.20(3)                     |
| P(11)   | 0.5636(6) | 0.605(1)  | 0.4760(7) | 0.069(7)                    |
| C(1111) | 0.596(2)  | 0.682(3)  | 0.5185(9) | 0.01(1)                     |
| C(1112) | 0.655(2)  | 0.652(2)  | 0.530(1)  | 0.06(2)                     |
| C(1113) | 0.687(1)  | 0.708(3)  | 0.563(1)  | 0.03(1)                     |
| C(1114) | 0.661(2)  | 0.794(3)  | 0.5841(8) | 0.06(2)                     |
| C(1115) | 0.602(2)  | 0.825(2)  | 0.5724(9) | 0.03(1)                     |
| C(1116) | 0.570(1)  | 0.769(4)  | 0.540(1)  | 0.04(2)                     |
| C(1121) | 0.489(1)  | 0.661(3)  | 0.463(1)  | 0.05(2)                     |
| C(1122) | 0.438(2)  | 0.634(2)  | 0.490(1)  | 0.03(1)                     |
| C(1123) | 0.383(2)  | 0.682(3)  | 0.481(1)  | 0.07(2)                     |
| C(1124) | 0.377(1)  | 0.756(3)  | 0.447(1)  | 0.07(2)                     |
| C(1125) | 0.427(2)  | 0.783(2)  | 0.4203(9) | 0.11(3)                     |
| C(1126) | 0.483(2)  | 0.736(4)  | 0.429(1)  | 0.07(2)                     |
| P(12)   | 0.7125(6) | 0.628(1)  | 0.4399(5) | 0.054(7)                    |
| C(1211) | 0.779(1)  | 0.602(4)  | 0.406(1)  | 0.04(2)                     |
| C(1212) | 0.824(2)  | 0.533(3)  | 0.420(1)  | 0.10(2)                     |
| C(1213) | 0.876(2)  | 0.520(3)  | 0.393(1)  | 0.11(3)                     |
| C(1214) | 0.882(1)  | 0.577(3)  | 0.352(1)  | 0.08(2)                     |
| C(1215) | 0.857(2)  | 0.659(3)  | 0.339(1)  | 0.03(2)                     |
| C(1210) | 0.765(2)  | 0.039(3)  | 0.500(1)  | 0.09(2)<br>0.11(3)          |
| C(1221) | 0.774(4)  | 0.793(8)  | 0.466(1)  | 0.11(3)<br>0.15(3)          |
| C(1222) | 0.782(2)  | 0.90(1)   | 0.479(1)  | 0.17(4)                     |
| C(1223) | 0.734(6)  | 0.966(3)  | 0.476(1)  | 0.10(2)                     |
| C(1225) | 0.677(4)  | 0.932(8)  | 0.461(1)  | 0.08(2)                     |
| C(1226) | 0.669(3)  | 0.83(1)   | 0.448(1)  | 0.09(2)                     |
| P(13)   | 0.6476(6) | 0.428(1)  | 0.5623(5) | 0.050(6)                    |
| C(1311) | 0.671(4)  | 0.297(3)  | 0.575(1)  | 0.05(2)                     |
| C(1312) | 0.729(3)  | 0.267(5)  | 0.563(1)  | 0.04(2)                     |
| C(1313) | 0.747(1)  | 0.163(7)  | 0.568(1)  | 0.05(2)                     |
| C(1314) | 0.707(4)  | 0.090(3)  | 0.586(1)  | 0.09(2)                     |
| C(1315) | 0.649(3)  | 0.120(5)  | 0.599(1)  | 0.12(3)                     |
| C(1316) | 0.630(2)  | 0.224(7)  | 0.594(1)  | 0.06(2)                     |
| C(1321) | 0.664(2)  | 0.491(3)  | 0.619(1)  | 0.06(2)                     |
| C(1322) | 0.631(1)  | 0.575(4)  | 0.635(1)  | 0.12(3)                     |
| C(1323) | 0.648(2)  | 0.623(2)  | 0.676(1)  | 0.07(2)                     |
| C(1324) | 0.698(2)  | 0.586(3)  | 0.7008(9) | 0.10(2)                     |
| C(1325) | 0.731(1)  | 0.502(4)  | 0.684(1)  | 0.08(2)                     |
| C(1326) | 0.714(2)  | 0.454(2)  | 0.643(1)  | 0.12(3)                     |
| C(1331) | 0.568(2)  | 0.427(4)  | 0.559(2)  | 0.08(2)                     |
| Ru(21)  | 0.4481(2) | 1.0019(3) | 0.7195(1) | 0.031(1)                    |
| Ru(22)  | 0.3213(2) | 1.0813(3) | 0.7353(2) | 0.044(2)                    |
| Ru(23)  | 0.3749(2) | 0.9010(3) | 0.0000(2) | 0.044(2)                    |
| U(211)  | 0.472(2)  | 1.12/(3)  | 0.730(1)  | 0.02(1)                     |
| 0(211)  | 0.487(1)  | 1.163(2)  | 0.770(1)  | 0.034(9)                    |

Table 6 (continued)

| Atom               | <i>x</i>  | у         | Z.        | $U_{eq}$ Å <sup>2</sup> |
|--------------------|-----------|-----------|-----------|-------------------------|
| C(212)             | 0.524(2)  | 0.984(4)  | 0.691(1)  | 0.04(2)                 |
| O(212)             | 0.570(2)  | 0.971(3)  | 0.679(1)  | 0.08(1)                 |
| C(221)             | 0.348(2)  | 1.219(3)  | 0.746(1)  | 0.03(1)                 |
| O(221)             | 0.348(2)  | 1.311(3)  | 0.754(1)  | 0.08(1)                 |
| C(222)             | 0.240(2)  | 1.113(4)  | 0.731(2)  | 0.07(2)                 |
| O(222)             | 0.189(2)  | 1.129(3)  | 0.720(1)  | 0.12(2)                 |
| C(223)             | 0.308(3)  | 1.059(4)  | 0.810(2)  | 0.09(2)                 |
| O(223)             | 0.277(2)  | 1.117(3)  | 0.833(1)  | 0.09(1)                 |
| C(231)             | 0.422(2)  | 1.047(5)  | 0.843(2)  | 0.10(2)                 |
| O(231)             | 0.445(2)  | 1.091(3)  | 0.867(1)  | 0.09(1)                 |
| C(232)             | 0.353(2)  | 0.872(4)  | 0.846(2)  | 0.05(2)                 |
| O(232)             | 0.344(1)  | 0.810(3)  | 0.874(1)  | 0.06(1)                 |
| P(21)              | 0.3149(5) | 0.8982(9) | 0.7410(4) | 0.028(5)                |
| C(2111)            | 0.354(2)  | 0.832(3)  | 0.6969(9) | 0.08(2)                 |
| C(2112)            | 0.411(2)  | 0.870(2)  | 0.686(1)  | 0.02(1)                 |
| C(2112)            | 0.445(1)  | 0.873(3)  | 0.651(1)  | 0.02(1)                 |
| C(2114)            | 0.420(2)  | 0.738(3)  | 0.6269(9) | 0.07(2)                 |
| C(2115)            | 0.363(2)  | 0.701(2)  | 0.638(1)  | 0.09(2)                 |
| C(2116)            | 0.329(1)  | 0.748(3)  | 0.673(1)  | 0.03(1)                 |
| C(2121)            | 0.325(1)  | 0.829(3)  | 0.375(1)  | 0.06(2)                 |
| C(2121)<br>C(2122) | 0.240(1)  | 0.829(3)  | 0.715(1)  | 0.05(2)                 |
| C(2122)            | 0.144(2)  | 0.340(2)  | 0.720(1)  | 0.08(2)                 |
| C(2123)            | 0.134(1)  | 0.797(3)  | 0.756(1)  | 0.03(2)                 |
| C(2124)<br>C(2125) | 0.134(1)  | 0.729(3)  | 0.7879(9) | 0.05(2)                 |
| C(2125)            | 0.236(1)  | 0.760(3)  | 0.783(1)  | 0.09(2)                 |
| P(22)              | 0.4639(6) | 0.883(1)  | 0.7783(5) | 0.038(6)                |
| C(2211)            | 0.528(1)  | 0.809(3)  | 0.816(1)  | 0.07(2)                 |
| C(2212)            | 0.526(1)  | 0.963(3)  | 0.8040(9) | 0.08(2)                 |
| C(2212)<br>C(2213) | 0.673(1)  | 0.982(2)  | 0.835(1)  | 0.03(1)                 |
| C(2213)            | 0.621(1)  | 0.937(3)  | 0.879(1)  | 0.06(2)                 |
| C(2214)            | 0.572(2)  | 0.873(3)  | 0.891(1)  | 0.11(3)                 |
| C(2216)            | 0.572(1)  | 0.854(2)  | 0.860(1)  | 0.09(2)                 |
| C(2210)            | 0.464(6)  | 0.031(2)  | 0.770(1)  | 0.06(2)                 |
| C(2221)            | 0.519(4)  | 0.690(9)  | 0.758(1)  | 0.05(2)                 |
| C(2222)<br>C(2223) | 0.571(3)  | 0.550(5)  | 0.7525(9) | 0.03(1)                 |
| C(2224)            | 0.470(6)  | 0.521(2)  | 0.7590(9) | 0.04(1)                 |
| C(2225)            | 0.415(3)  | 0.569(9)  | 0.7713(9) | 0.04(2)                 |
| C(2226)            | 0.412(3)  | 0.68(1)   | 0.7768(9) | 0.06(2)                 |
| P(23)              | 0.4054(6) | 1.096(1)  | 0.6585(5) | 0.051(6)                |
| C(2311)            | 0.428(4)  | 1.235(2)  | 0.658(1)  | 0.05(2)                 |
| C(2312)            | 0.485(3)  | 1.271(6)  | 0.671(1)  | 0.03(1)                 |
| C(2313)            | 0.500(2)  | 1.376(7)  | 0.666(1)  | 0.09(2)                 |
| C(2314)            | 0.457(4)  | 1.446(2)  | 0.649(1)  | 0.05(2)                 |
| C(2315)            | 0.400(3)  | 1.410(6)  | 0.6359(9) | 0.07(2)                 |
| C(2316)            | 0.385(2)  | 1.304(7)  | 0.640(1)  | 0.07(2)                 |
| C(2321)            | 0.428(2)  | 1.050(3)  | 0.6018(9) | 0.05(2)                 |
| C(2322)            | 0.391(1)  | 0.980(3)  | 0.578(1)  | 0.09(2)                 |
| C(2323)            | 0.408(2)  | 0.950(3)  | 0.534(1)  | 0.09(2)                 |
| C(2324)            | 0.460(2)  | 0.989(3)  | 0.5136(9) | 0.09(2)                 |
| C(2325)            | 0.497(1)  | 1.058(3)  | 0.538(1)  | 0.18(4)                 |
| C(2326)            | 0.481(2)  | 1.089(3)  | 0.582(1)  | 0.12(3)                 |
| C(2331)            | 0.327(2)  | 1.095(3)  | 0.667(1)  | 0.02(1)                 |
| <u></u>            |           |           |           |                         |

\* Defines origin.

present case. The  $PPh_2CH_2$  ligand is also found in complexes 6 and 7 (see above).

The PPh(C<sub>6</sub>H<sub>4</sub>) ligand is relatively uncommon and recent examples occur in the tetranuclear clusters RhRu<sub>3</sub>( $\mu$ -H){ $\mu$ -PPh(C<sub>6</sub>H<sub>4</sub>)}( $\mu$ -CO)(CO)<sub>6</sub>(PPh<sub>3</sub>)<sub>2</sub> [10]

and Ru<sub>4</sub>( $\mu$ -H){ $\mu_4$ -PPh(C<sub>6</sub>H<sub>4</sub>)}( $\mu$ -PPh<sub>2</sub>)(CO)<sub>10</sub> [11]. In the former, however, the P-C<sub>6</sub>H<sub>4</sub> part of the ligand interacts further with the Rh atom by an  $\eta^3(P, 2C)$ mode; in the latter, the phosphorus atom of this ligand exhibits an unusual five-coordination. Clearly, the mild conditions employed in the present reactions can lead to a variety of interesting complexes formed by facile modification of the tertiary phosphine ligands — further examples will no doubt emerge as additional studies are carried out.

## 4. Experimental

General reaction conditions were similar to those reported in an earlier paper [9b]. The complex  $Ru_3(\mu$ -

| Table 7      |            |     |           |              |            |     |
|--------------|------------|-----|-----------|--------------|------------|-----|
| Non-hydrogen | positional | and | isotropic | displacement | parameters | (6) |

| Atom          | x          | y                    | ζ                     | $U_{\rm eq}$ Å <sup>2</sup> |
|---------------|------------|----------------------|-----------------------|-----------------------------|
| <b>R</b> u(1) | 0.15657(7) | 1.2327(1)            | 0.2073(1)             | 0.0445(6)                   |
| Ru(2)         | 0.28740(6) | 1.0495(1)            | 0.2271(1)             | 0.0335(5)                   |
| C(11)         | 0.200(1)   | 1.389(2)             | 0.104(2)              | 0.058(8)                    |
| O(11)         | 0.2298(8)  | 1.479(1)             | 0.039(1)              | 0.092(8)                    |
| C(12)         | 0,130(1)   | 1.221(2)             | 0.042(2)              | 0.064(9)                    |
| O(12)         | 0.1146(8)  | 1.211(1)             | -0.055(1)             | 0 101(8)                    |
| C(13)         | 0.063(1)   | 1.301(2)             | 0.258(2)              | 0.08(1)                     |
| <b>O</b> (13) | 0.0058(7)  | 1.348(2)             | 0.283(2)              | 0.13(1)                     |
| C(21)         | 0.3462(9)  | 1.173(2)             | 0.117(2)              | 0.050(8)                    |
| O(21)         | 0.3818(7)  | 1.255(1)             | 0.047(1)              | 0.075(7)                    |
| C(22)         | 0.2702(8)  | 1.006(1)             | 0.078(2)              | 0.043(7)                    |
| O(22)         | 0.2591(6)  | 0.984(1)             | -0.015(1)             | 0.045(7)                    |
| C(1)          | 0.2996(7)  | 1 122(1)             | 0.395(1)              | 0.001(0)                    |
| P(1)          | 0.2091(2)  | 1.122(1)             | 0.555(1)<br>0.4182(4) | 0.043(2)                    |
| C(111)        | 0.2001(2)  | 1 312(2)             | 0.500(2)              | 0.049(8)                    |
| C(112)        | 0.2570(9)  | 1.312(2)<br>1.326(2) | 0.556(2)              | 0.047(0)                    |
| C(112)        | 0.2570(9)  | 1.320(2)             | 0.550(2)              | 0.004(9)                    |
| C(114)        | 0.232(1)   | 1.410(2)<br>1.476(2) | 0.029(2)              | 0.00(1)                     |
| C(114)        | 0.100(1)   | 1.470(2)<br>1.462(2) | 0.049(2)              | 0.09(1)                     |
| C(116)        | 0.129(1)   | 1.402(2)             | 0.594(3)              | 0.11(1)                     |
| C(116)        | 0.134(1)   | 1.383(2)             | 0.510(2)              | 0.09(1)                     |
| C(101)        | 0.1749(7)  | 1.049(1)             | 0.551(2)              | 0.040(7)                    |
| C(102)        | 0.1525(7)  | 0.959(2)             | 0.505(2)              | 0.045(7)                    |
| C(103)        | 0.1291(8)  | 0.840(2)             | 0.604(2)              | 0.054(8)                    |
| C(104)        | 0.1237(9)  | 0.815(2)             | 0.744(2)              | 0.063(9)                    |
| C(105)        | 0.1468(9)  | 0.904(2)             | 0.789(2)              | 0.063(9)                    |
| C(106)        | 0.1703(8)  | 1.020(2)             | 0.694(2)              | 0.051(8)                    |
| P(2)          | 0.1723(2)  | 0.9969(4)            | 0.3226(4)             | 0.041(2)                    |
| C(211)        | 0.1253(8)  | 0.889(2)             | 0.279(2)              | 0.048(7)                    |
| C(212)        | 0.0524(9)  | 0.914(2)             | 0.269(2)              | 0.09(1)                     |
| C(213)        | 0.018(1)   | 0.832(3)             | 0.232(3)              | 0.12(2)                     |
| C(214)        | 0.056(1)   | 0.730(3)             | 0.205(3)              | 0.11(2)                     |
| C(215)        | 0.128(1)   | 0.697(2)             | 0.219(2)              | 0.09(1)                     |
| C(216)        | 0.1642(9)  | 0.781(2)             | 0.255(2)              | 0.07(1)                     |
| P(3)          | 0.3811(2)  | 0.8660(4)            | 0.3110(4)             | 0.035(2)                    |
| C(311)        | 0.4722(7)  | 0.909(1)             | 0.282(1)              | 0.037(6)                    |
| C(312)        | 0.5324(8)  | 0.848(2)             | 0.228(2)              | 0.052(8)                    |
| C(313)        | 0.5977(9)  | 0.886(2)             | 0.215(2)              | 0.061(9)                    |
| C(314)        | 0.6075(8)  | 0.990(2)             | 0.251(2)              | 0.057(9)                    |
| C(315)        | 0.5487(9)  | 1.051(2)             | 0.308(2)              | 0.054(8)                    |
| C(316)        | 0.4827(7)  | 1.013(2)             | 0.320(2)              | 0.048(8)                    |
| C(321)        | 0.3848(8)  | 0.741(1)             | 0.233(2)              | 0.043(7)                    |
| C(322)        | 0.3609(9)  | 0.619(2)             | 0.307(2)              | 0.055(8)                    |
| C(323)        | 0.360(1)   | 0.530(2)             | 0.246(2)              | 0.08(1)                     |
| C(324)        | 0.389(1)   | 0.556(2)             | 0.115(2)              | 0.08(1)                     |
| C(325)        | 0.413(1)   | 0.677(2)             | 0.037(2)              | 0.08(1)                     |
| C(326)        | 0.4130(9)  | 0.769(2)             | 0.094(2)              | 0.052(8)                    |
| C(331)        | 0.3831(8)  | 0.755(1)             | 0.493(1)              | 0.041(7)                    |
| C(332)        | 0.3239(8)  | 0.758(1)             | 0.583(2)              | 0.043(7)                    |
| C(333)        | 0.326(1)   | 0.665(2)             | 0.715(2)              | 0.062(9)                    |
| C(334)        | 0.383(1)   | 0.566(2)             | 0.769(2)              | 0.066(9)                    |
| C(335)        | 0.442(1)   | 0.565(2)             | 0.681(2)              | 0.067(9)                    |
| C(336)        | 0.4436(9)  | 0.657(2)             | 0.549(2)              | 0.055(8)                    |

dppm)(CO)<sub>9</sub>(PPh<sub>3</sub>) was made as described elsewhere [7d].

## 4.1. Pyrolysis of $Ru_3(\mu$ -dppm)(CO)<sub>9</sub>(PPh<sub>3</sub>)

A solution of  $\text{Ru}_3(\mu\text{-dppm})(\text{CO})_9(\text{PPh}_3)$  (150 mg, 0.125 mmol) in toluene (10 ml) was heated at reflux point for 1.5 h. After cooling the solvent was removed in vacuo, the residue dissolved in  $\text{CH}_2\text{Cl}_2$  (2 ml) and separated by thin layer chromatography (silica gel; acetone/hexane 3:7) into six coloured bands and a baseline.

The product from band 1 ( $R_f$  0.60) was recrystallised (CH<sub>2</sub>Cl<sub>2</sub>/MeOH) to give pale yellow crystals of Ru<sub>2</sub>( $\mu$ -PPhC<sub>6</sub>H<sub>4</sub>PPhCH<sub>2</sub>)(CO)<sub>6</sub> (7) (8 mg, 9.4%), identified by an X-ray study and by comparison with an authentic sample [4]. IR (cyclohexane):  $\nu$ (CO) 2069s, 2053w, 2036vs, 2007vs, 1988m, 1982m, 1972m, 1960(sh) cm<sup>-1</sup>.

The second red band ( $R_f$  0.50) gave dark red crystals of 4 (10 mg, 8%). IR (cyclohexane):  $\nu$ (CO) 2053vs, 2027s, 2001vs, 1989m, 1983vw, 1919w, 1916w cm<sup>-1</sup>. <sup>1</sup>H NMR:  $\delta$ (CDCl<sub>3</sub>) 0.89 (m, 1H, CH<sub>2</sub>), 5.72 (m, 1H, CH<sub>2</sub>), 6.19–8.06 (m, 29H, 5Ph + C<sub>6</sub>H<sub>4</sub>). FAB MS (m/z): 1069, M<sup>+</sup>; 1041–873, [M–nCO]<sup>+</sup> (n = 1-7); 796–642, [M–7CO–nPh]<sup>+</sup> (n = 1-3).

Band 3 ( $R_f$  0.45) gave yellow crystals (from C<sub>6</sub>H<sub>6</sub>) of Ru<sub>2</sub>( $\mu$ -PPhC<sub>6</sub>H<sub>4</sub>PPhCH<sub>2</sub>)(CO)<sub>5</sub>(PPh<sub>3</sub>) (**6**) (12 mg, 11%). IR (CH<sub>2</sub>Cl<sub>2</sub>):  $\nu$ (CO) 2046vs, 1986vs, 1957m (br), 1932w (br) cm<sup>-1</sup>. FAB MS (m/z): 912, M<sup>+</sup>; 828-772, [M-nCO]<sup>+</sup> (n = 3-5) (most intense peak for n = 5). Further crystallisation afforded Ru<sub>3</sub>{ $\mu_3$ -PPhCH<sub>2</sub>PPh(C<sub>6</sub>H<sub>4</sub>)](CO)<sub>9</sub> (**5**) as orange crystals, identified form its IR  $\nu$ (CO) spectrum.

A dark orange band ( $R_f$  0.41) was recrystallised from CH<sub>2</sub>Cl<sub>2</sub> to give orange crystals of Ru<sub>4</sub>( $\mu_4$ -PPh)( $\mu_4$ -PPh<sub>2</sub>C<sub>6</sub>H<sub>4</sub>CO)( $\mu$ -PPh<sub>2</sub>CH<sub>2</sub>)(CO)<sub>8</sub> (**3**) (67 mg, 41%). IR (cyclohexane):  $\nu$ (CO) 2042w, 2026vs, 2014(sh), 2000m, 1991m, 1976m, 1968w, 1960vw, 1951w cm<sup>-1</sup>. FAB MS (m/z): 1226, M<sup>+</sup>; 1198–974, [M-nCO]<sup>+</sup> (n = 1-9); 897–743, [M-9CO-nPh]<sup>+</sup> (n = 1-3).

Two other minor bands were not identified.

## 4.2. Crystallography

Unique data sets were measured at ca. 295 K within the specified  $2\theta_{max}$  limits using an Enraf-Nonius CAD4 diffractometer  $(2\theta/\theta \text{ scan mode}; \text{monochromatic Mo}$ K  $\alpha$  radiation,  $\lambda = 0.71073$  Å); N independent reflections were obtained,  $N_o$  with  $I > 3\sigma(I)$  being considered 'observed' and used in the full-matrix least-squares refinement after Gaussian absorption correction. Anisotropic thermal parameters were refined for the non-hydrogen atoms;  $(x, y, z, U_{iso})_{H}$  were included constrained at estimated values. Conventional residuals R, R' on |F| are quoted, statistical weights derivative of  $\sigma^2(I) = \sigma^2(I_{\text{diff}}) + 0.0004\sigma^4(I_{\text{diff}})$  being used. Computation used the XTAL 3.0 program system [12] implemented by Hall; neutral atom complex scattering factors were employed. Pertinent results are given in the figures and tables. Tables of H-atom coordinates and thermal parameters and complete lists of bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre.

## 4.3. Abnormal features / variations in procedure

All three determinations recorded in this paper are, for various reasons, inferior, serving only to establish non-hydrogen atom stereochemistries and confirming stoichiometry at that level. The only dimensions with any useful degree of precision are those associated with the heavy atoms. Specifically: for 3, data were very weak; O(3121) was assigned as such from chemical considerations. Anisotropic thermal parameter forms were refined for Ru and P only. For 4, data were very weak and limited in extent, refinement problems being compounded by pseudosymmetry. Ru and P only were refined with anisotropic thermal parameter forms, phenyl rings being treated as rigid bodies. The chirality of the asymmetric unit was assigned by a ratio test. For 6, specimens were compound/twinned aggregates with wide line widths.

## Acknowledgements

We thank the Australian Research Council for financial support and Johnson Mathey Technology for a generous loan of  $RuCl_3 \cdot nH_2O$ . NNZ thanks the Director, INEOS, Russian Academy of Sciences, Moscow for leave of absence.

## References

- A.J. Deeming, in E.W. Abel, F.G.A. Stone and G. Wilkinson (eds.), *Comprehensive Organometallic Chemistry*, Elsevier, Oxford, 2nd edn., 1995, Chapter 12, p. 683.
- [2] N. Lugan, J.-J. Bonnet and J.A. Ibers, J. Am. Chem. Soc., 107 (1985) 4484.
- [3] M.I. Bruce, E. Horn, O. bin Shawkataly, M.R. Snow, E.R.T. Tiekink and M.L. Williams, J. Organomet. Chem., 316 (1986) 187.
- [4] M.I. Bruce, J.R. Hinchliffe, R.J. Surynt, B.W. Skelton and A.H. White, J. Organomet. Chem., 469 (1994) 89.
- [5] (a) C.W. Bradford and R.S. Nyholm, J. Chem. Soc., Dalton Trans., (1973) 529; (b) M.I. Bruce, G. Shaw and F.G.A. Stone, J. Chem. Soc., Dalton Trans., (1972) 2094; (c) M.I. Bruce, J.M. Guss, R. Mason, B.W. Skelton and A.H. White, J. Organomet. Chem., 251 (1983) 261; (d) S.A.R. Knox, B.R. Lloyd, D.A.V. Morton, S.M. Nicholls, A.G. Orpen, J.M. Viñas, M. Weber and G.K. Williams, J. Organomet. Chem., 394 (1990) 385.

- [6] J.P.H. Charmant, H.A.A. Dickson, N.J. Grist, J.B. Keister, S.A.R. Knox, D.A.V. Morton, A.G. Orpen and J.M. Viñas, J. Chem. Soc., Chem. Commun., (1991) 1393.
- [7] (a) D.F. Foster, J. Harrison, B.S. Nicholls and A.K. Smith, J. Organomet. Chem., 295 (1985) 99; (b) B. Ambwani, S.K. Chawla and A.J. Poë, Inorg. Chim. Acta, 133 (1987) 93; (c) B. Ambwani, S. Chawla and A.J. Poë, Polyhedron, 7 (1988) 1939; (d) M.I. Bruce, P.A. Humphrey, R.J. Surynt and E.R.T. Tiekink, Aust. J. Chem., 47 (1994) 477.
- [8] M.I. Bruce, P.A. Humphrey, B.W. Skelton, A.H. White and M.L. Williams, Aust. J. Chem., 38 (1985) 1301.
- [9] (a) C.J. Adams, M.I. Bruce, O. Kühl, B.W. Skelton and A.H. White, J. Organomet. Chem., 445 (1993) C6; (b) C.J. Adams, M.I. Bruce, P.A. Duckworth, P.A. Humphrey, O. Kühl, E.R.T. Tiekink, W.R. Cullen, P. Braunstein, S. Coco Cea, B.W. Skelton and A.H. White, J. Organomet. Chem., 467 (1994) 251.
- [10] H. Jungbluth, G. Süss-Fink, M.A. Pellinghelli and A. Tiripicchio, Organometallics, 9 (1990) 1670.
- [11] J.F. Corrigan, S. Doherty, N.J. Taylor and A.J. Carty, J. Am. Chem. Soc., 114 (1992) 7557.
- [12] S.R. Hall and J.M. Stewart (eds.), *XTAL Users' Manual, Vers.* 3.0, Universities of Western Australia and Maryland, 1990.